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Abstract

The linear pool is the most popular method for combining density forecasts. We analyze

its implications concerning forecast uncertainty, using a new framework that focuses on

the means and variances of the individual and combined forecasts. Our results show

that, if the variance predictions of the individual forecasts are unbiased, the well-known

‘disagreement’ component of the linear pool exacerbates the upward bias of its variance

prediction. This finding suggests the removal of the disagreement component from the

linear pool. The resulting centered linear pool outperforms the linear pool in simulations

and an empirical application to inflation.
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1 Introduction

There is a growing recognition that measuring forecast uncertainty matters for economic pol-

icy. For example, many central banks have followed the Bank of England’s lead in publishing

probabilistic forecasts of inflation and related variables; see Franta et al. (2014, Table 1).

Similarly, Manski (2015) calls for systematic measurement and communication of uncertainty

in official statistics. In statistical terms, confronting uncertainty suggests to issue density

forecasts, rather than traditional point forecasts. An immediate question is how to make

‘good’ density forecasts. In light of many available forecasting methods and data sources, it

is often a combination of several individual forecasts, rather than a single forecast, that is

considered for this purpose.

While various combination methods have been proposed, the comprehensive survey by

Aastveit et al. (2019, p. 20) argues that “[..] most applications still focus on the linear opinion

pool [..]”. Given a set of n individual density forecasts f1, . . . , fn, the linear opinion pool, or

simply linear pool (LP), is computed as flp =
∑n

i=1 ωifi, where {ωi}ni=1 are the combination

weights (Stone, 1961). The concept of the LP is, for instance, employed to produce aggregate

probability distributions in the Survey of Professional Forecasters (SPF) conducted by the

Federal Reserve Bank of Philadelphia and, in similar form, by the European Central Bank.

In the present paper, we analyze the LP’s implications concerning forecast uncertainty.

For this purpose, we consider the joint behavior of mean forecasts, variance forecasts, and the

target variable in terms of their first two moments. We derive several new results, focusing on

the LP’s ‘disagreement’ component which quantifies differences between the mean forecasts

of the individual densities. While disagreement has received considerable attention as a

potential proxy for economic uncertainty (e.g. Dovern et al., 2012), its role turns out to be

problematic in the context of the LP.

First, we show that if the individual density forecasts are variance-unbiased (as defined in

Assumption 1 below), the LP’s variance is upward biased by twice the expected disagreement.

This result sharpens and quantifies a related qualitative finding by Gneiting and Ranjan

(2013) concerning the LP’s overdispersion. Second, under a set of conditions including joint

normality, we show that, within the LP, disagreement has no predictive content for squared

forecast errors, thereby violating a desideratum of good uncertainty forecasts. Third, we

argue that choosing combination weights for the LP entails a trade-off since the weights
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affect both the mean forecast and the variance forecast of the LP. Weights that are optimal

for the mean are typically not optimal for the corresponding variance.

The first two results indicate that disagreement harms the LP’s variance forecasts, which

suggests that a variance specification without disagreement should be considered. We there-

fore propose the centered linear pool (CLP), a simple modification of the LP which achieves

this goal and alleviates the trade-off between mean-optimal and variance-optimal weights.

We illustrate our results and investigate the performance of the CLP in simulations and an

empirical application to inflation forecasts.

The remainder of this paper is structured as follows: Section 2 derives properties of an

optimal variance forecast. These properties form a benchmark for evaluating any variance

forecast, including that of the LP. Section 3 presents a baseline example which motivates

our analysis of the LP and previews our main results. Section 4 presents more general

results on bias in the LP’s variance forecast, and on the comovement between disagreement

and squared forecast errors. Sections 5 and 6 contain simulation and empirical results, and

Section 7 concludes.

2 Properties of an optimal variance forecast

We first derive simple yet crucial properties of an optimal variance forecast. As a measure of

forecast accuracy, we consider the Dawid and Sebastiani (1999) scoring rule which depends

only on the mean and variance of a forecast distribution, in line with the focus of our analysis.

The Dawid-Sebastiani score (DSS) equals the negative logarithmic score (log score) of a

Gaussian forecast density fN with mean m and variance v, i.e.

DSS(y;m, v) = − log(fN (y;m, v))

= 0.5 log(2π) + 0.5 log(v) +
(y −m)2

2 v
, (1)

where y denotes the realization of the target variable.1 A smaller score corresponds to a better

forecast. Consider forecasting the parameters m and v of a random variable Y , conditional

1In the literature, the equivalent score log(v) + (y−m)2

v
is more common. However, we stick to the variant

in equation (1) for better comparability with the log score.
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on some information set I. Then the expectation E [DSS(Y ;m, v)|I] is minimized by setting

m = E [Y |I] , (2)

v = E [S|I] , (3)

where S = (Y − m)2 denotes the squared forecast error. Hence the DSS rewards forecast

densities f (that need not be Gaussian) with a correctly specified conditional mean forecast

m and conditional variance forecast v, where the latter depends on the former.2

In the terminology of Gneiting and Raftery (2007), the DSS is a proper but not a strictly

proper scoring rule. This is because the DSS focuses on the first two moments of f only.

A density forecast with misspecified higher order moments may hence perform equally well

as the ideal density forecast. For example, suppose that the ideal forecast density is skewed

with zero mean, unit variance and nonzero median. Then stating a standard normal forecast

density yields the same expected DSS as the ideal density. Hence, under the DSS, forecasters

have no incentive to correctly model the third or higher moments of the predictand Y .

The situation is different for other scoring rules like the log score, the continuous ranked

probability score (Matheson and Winkler, 1976), or certain weighted scoring rules (e.g. Lerch

et al., 2017), which are strictly proper and thus incentivize forecasters to model the entire

forecast density correctly. That said, the optimality conditions at (2) and (3) are not specific

to the DSS, but are shared by all strictly proper scoring rules.3

In a multi-observation setup, we treat the mean and variance forecasts as random vari-

ables M and V . Variation in M and V may be informative (resulting from variation in the

conditioning information set I) or not. The optimality condition in equation (3) has two

main implications in this context: First, V and S should be equal on average, i.e.

E[S] = E[V ]. (4)

Clements (2014) uses this equality in an empirical analysis of subjective probability distri-

butions. We refer to the unconditional expectation E[S] as the mean squared forecast error

2The studies listed in Krüger et al. (2020, Table 1 of the Online Supplement) use the log score to evaluate
a Gaussian approximation to their forecast densities. This approach is equivalent to applying the DSS to the
forecast densities.

3To see this point, note that each strictly proper scoring rule is optimized by stating the true forecast
density f(Y |I). The forecast mean and variance implied by this density are given by (2) and (3).
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(MSFE). Second, from the law of total covariance, the requirement that V = E[S|I] implies

that

Cov[V, S] = V [E[S|I]] ≥ 0, (5)

where Cov[•] and V[•] denote covariance and variance, respectively. The inequality is strict

only in the presence of predictable heteroskedasticity, because in this case E[S|I] varies with

I.

From an empirical perspective, our setup seems appropriate at least for macroeconomic

time series which motivate the present paper. In particular, our focus on the conditional

forecast mean M and variance V (given an information set I) allows for considerable flex-

ibility through the joint distribution of M , V and the outcome Y . Empirical evidence by

Carriero et al. (2020) indicates that this flexibility is sufficient for capturing asymmetries in

the unconditional distribution of Y that have been emphasized by Adrian et al. (2019) and

others. As a robustness check, we further present results on the log score in addition to the

DSS in our Monte Carlo simulations and empirical analysis.

3 The linear pool’s variance forecast: Baseline example

We next provide a simple example in which the LP violates one or both of the implications

of an optimal variance forecast stated in equations (4) and (5). Consider a variable Y given

by Y = X1 +X2 + U, where X1, X2 and U are distributed as


X1

X2

U

 ∼ N



0

0

0

 ,

σ2
X ρσ2

X 0

ρσ2
X σ2

X 0

0 0 σ2
U


 .

Forecaster 1 only observes X1, and forecaster 2 only observes X2. Both forecasters aim to

predict the distribution of Y and state the correct forecast distribution given their infor-

mation sets. Each forecaster i ∈ {1, 2} thus issues a Gaussian forecast density with mean

Mi and variance Vi. Table 1 lists the formulas for Mi and Vi, as well as all other relevant

formulas for this example. The LP of the two forecasts is given by flp = ω1f1 + (1− ω1)f2,

where flp is the density of the combined forecast, f1 and f2 are the individual densities, and
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0 ≤ ω1 ≤ 1 is the weight on the first forecast. Here and throughout the paper, we take

the combination weights to be fixed, non-stochastic quantities. We denote the mean and

variance of this combined density by Mlp and Vlp, respectively.

As shown in Table 1, both forecasters fulfill the requirements mentioned in Section 2.

First, their variance forecasts Vi and squared forecast errors Si are equal in expectation.

Second, the covariance between each variance forecast and the corresponding squared er-

ror Cov[Vi, Si] is equal to the variance of the expected (conditional) squared forecast error

V [E[Si]] = V [E[Si|I]]. Due to the homoskedasticity in this example, both terms are equal

to zero.

The LP’s variance forecast is of the form Vlp = a+D, where a is a constant and D is the

well-known measure of disagreement between the two point forecasts (see e.g. Wallis 2005).

Strikingly, the LP’s variance Vlp fails the requirement (4). The LP’s expected variance,

E[Vlp], exceeds its MSFE, E[S], by 2E[D]. The LP can therefore be labeled underconfident,

and the disagreement term D ≥ 0 contributes to the LP’s underconfidence. In addition,

if ω1 = 0.5, the LP’s variance Vlp has no predictive content for its squared forecast error,

such that requirement (5) is not fulfilled. It can be shown that with ω1 = 0.5, D is not

only uncorrelated with S, but also independent of S (see Online Appendix, Section I). Note

that equal weighting, here corresponding to ω1 = 0.5, is a popular choice in practice, and

minimizes the MSFE of the combined mean forecast in the present example. For other

choices of ω1, the relation between D and S depends on ρ, σ2
X and σ2

U , but often implies

weak correlation between D and S. In the case ω1 = 0.5, disagreement can be regarded as

a noise term which deteriorates the LP’s variance forecast.

The example illustrates that the LP’s variance exceeds the average variance of the in-

dividual forecasts. Of course, this is also problematic if the individual variances are too

large instead of unbiased. By contrast, the increase in variance due to linear pooling can be

desirable if the individual variances are too small. Given the multitude of empirical settings

in which the LP is used (featuring different scientific disciplines, data sources, and individual

models), each of these situations can be empirically relevant. The aim of the present paper

is to analyze the LP in the situation where the individual variances are unbiased. This sit-

uation seems especially relevant if each individual forecast is based on a statistical model,

such that variance unbiasedness is implicitly pursued in the model fitting process.
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Object Formula

Individual forecasters

Mean forecasts Mi = (1 + ρ)Xi

Variance forecasts Vi = V = (1− ρ2)σ2
X + σ2

U

Squared error of Mi Si = (−ρXi +Xj + U)2, i 6= j

MSFE of Mi E[Si] = (1− ρ2)σ2
X + σ2

U

Covariance of Vi and Si Cov[Vi, Si] = 0

Linear pool

Mean forecast Mlp = ω1M1 + (1− ω1)M2

Disagreement D = ω1(Mlp −M1)2 + (1− ω1) (Mlp −M2)2

= ω1(1− ω1)(M1 −M2)2

Variance forecast Vlp = V +D

Squared error of Mlp S =
(

(1− ω1 (1 + ρ))X1 + (ω1 (1 + ρ)− ρ)X2 + U
)2

Expected disagreement E[D] = 2ω1(1− ω1)(1− ρ2)(1 + ρ)σ2
X

Expected variance forecast E[Vlp] = (1− ρ2)σ2
X + σ2

U + 2ω1(1− ω1)(1− ρ2)(1 + ρ)σ2
X

= V + E[D]

MSFE of Mlp E[S] = (1− ρ2)σ2
X + σ2

U − 2ω1(1− ω1)(1− ρ2)(1 + ρ)σ2
X

= V − E[D]

Covariance of D and S Cov[D,S] = 2ω1 (1− ω1) (2ω1 − 1)2 (1− ρ)2 (1 + ρ)4 σ4
X

Covariance of Vlp and S Cov[Vlp, S] = Cov[D,S]

Table 1: Formulas for the baseline example. Moments of linear pool follow from aggregation
of individual forecast densities according to flp = ω1f1 +(1−ω1)f2. MSFE denotes the mean
squared forecast error.
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4 The linear pool’s variance forecast:

General framework

We now consider the more general situation where n density forecasts fi with corresponding

mean and variance forecasts {mi, vi}ni=1 are available, where the index i denotes an individual

forecast. The LP determines the combined density as flp =
∑n

i=1 ωifi, implying the mean

and the variance forecast

mlp =

n∑
i=1

ωimi (6)

vlp =

n∑
i=1

ωivi + d (7)

with d =
∑n

i=1 ωi(mi − mlp)
2, such that

∑n
i=1 ωivi is the weighted average variance com-

ponent and d is the disagreement component of the LP’s variance forecast. For the case of

equal weights, this formula appeared, for instance, in Lahiri et al. (1988) and Wallis (2005),

and its general form is well-known in the context of moments of mixture distributions (see

Frühwirth-Schnatter, 2006, chap. 1.2.4). We generally restrict attention to weights {ωi}ni=1

that are nonnegative and sum to one. This ensures that the density flp is well-defined and,

in particular, that the LP’s variance vlp is nonnegative. Furthermore, we mostly take the

mean specification in (6) as given, and investigate the properties of the variance specification

in (7) conditional on (6).

We will also consider a simple modification of the LP, the centered linear pool (CLP),

with mclp = mlp and

vclp =
n∑
i=1

ωivi = vlp − d. (8)

Hence the CLP has the same mean forecast as the LP, but its variance forecast does not

contain the disagreement term. Clements (2018) suggests using the CLP variance in the

context of combining survey forecasts, on the grounds that it equals the expected variance

of a randomly selected individual forecaster. Denoting a density fi with mean mi and

variance vi by fi(mi, vi), the CLP is constructed as fclp =
∑n

i=1 ωifi(mclp, vi). Thus, each

individual density is relocated such that its mean equals mclp = mlp instead of mi before
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being combined. If the individual densities are symmetric, then the CLP density is symmetric

as well. This behavior is distinct from the LP density which may be asymmetric even if the

individual densities are symmetric. We elaborate on this aspect in Section II of the Online

Appendix.

Equations (6) to (8) are formulated in terms of given mean and variance forecasts

{mi, vi}ni=1. From an ex-ante perspective, these objects are random variables which we

denote by {Mi, Vi}ni=1. We proceed using the ex-ante perspective.

We next relate the squared error of the individual forecast i, Si = (Y −Mi)
2, to the

squared error of the combined mean forecast Mlp, S = (Y − Mlp)
2. By definition, the

weighted sum of the individual squared forecast errors equals

n∑
i=1

ωiSi =
n∑
i=1

ωi(Y −Mi)
2

= (Y −Mlp)
2 +

n∑
i=1

ωi(Mi −Mlp)
2

= S +D (9)

where D =
∑n

i=1 ωi(Mi−Mlp)
2 denotes disagreement among the point forecasts. The second

equality follows from subtracting and adding Mlp, and from noting that
∑n

i=1 ωi(Mi −Mlp)

equals zero. Engle (1983, eq. 11) and Lahiri et al. (2015, eq. 3) state the identity at (9) for

the case of equal weights; Page (2007, 2018) refers to it as the ‘prediction diversity theorem’

and discusses its broader implications. Equation (9) refines the inequality S ≤
∑n

i=1 ωiSi

that has been emphasized by McNees (1992), Manski (2010), Lichtendahl Jr et al. (2013)

and others.

The following assumption relates Vi to its ex-post counterpart Si.

Assumption 1. The individual variance forecasts {Vi}ni=1 are unconditionally unbiased, i.e.

they satisfy E[Vi] = E[Si], i = 1, . . . , n, where Si = (Y −Mi)
2 is the squared error of forecast

i.

Note that Assumption 1 imposes the unconditional notion of variance unbiasedness for-

mulated in (4), which is weaker than the DSS optimality condition in (3).

Using Assumption 1, denoting the vector of weights (ω1, ω2, . . . , ωn)′ by ω, and the cor-

responding vector of the individual variance forecasts (V1, V2, . . . , Vn)′ by V , taking expec-
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tations of (9) gives

E[S] = E[ω′V ]− E[D]. (10)

Taking expectations of the ex-ante versions of the variance forecasts (7) and (8) implied

by the LP and the CLP yields

E[Vlp] = E[ω′V ] + E[D] (11)

E[Vclp] = E[ω′V ], (12)

and equations (10), (11), and (12) directly lead to

Proposition 1. Under Assumption 1, the LP’s and CLP’s variance forecasts systematically

deviate from E[S] according to

E[S] = E[ω′V ] + E[D]︸ ︷︷ ︸
E[Vlp]

−2 E[D],

= E[ω′V ]︸ ︷︷ ︸
E[Vclp]

− E[D].

This result shows that the variance forecasts of the LP and the CLP are upward biased,

even though the individual variance forecasts are unbiased. The LP’s bias is twice as large

as the CLP’s bias, which is equal to the expected disagreement.

Despite the popularity of the linear pool, to the best of our knowledge, this important

result has not been documented in the literature yet. We are aware of two related findings,

though. First, Lahiri and Sheng (2010) derive a similar result in the context of a factor model

of forecaster disagreement.4 By contrast, we work under a single generic assumption (As-

sumption 1) and consider implications for combining density forecasts. Second, Gneiting and

Ranjan (2013, Theorem 3.1(c)) show that an LP of ‘neutrally dispersed’ forecast densities

is underconfident. In contrast to our focus on the mean and variance, Gneiting and Ranjan

(2013) define ‘neutral dispersion’ and underconfidence in terms of the Probability Integral

Transform (PIT) which depends on the entire forecast density. While considering the entire

4Their equation (8) yields the same statement as our Proposition 1 if their expression σ2
λ|th is equal to our

E[S]. This condition is satisfied, for example, if the number of forecasters (N in their notation) diverges to
infinity and equal combination weights are used.
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density is appealing in principle, it can be hard to identify which particular features of the

density prohibit calibration. Our approach of defining calibration in terms of forecast vari-

ance allows us to sharpen the result of Gneiting and Ranjan (2013) by identifying disagree-

ment as a variance-bias augmenting term and by precisely quantifying the bias. Obviously,

if the individual variance forecasts are too large, i.e. if they satisfy E[Vi] > E
[
(Y −Mi)

2
]
,

the upward biases from Proposition 1 are exacerbated. By contrast, the biases are reduced

and could even become negative if the individual variance forecasts are too small.

Proposition 1 states that disagreement causes an upward bias in the LP’s variance, and

as such is not desirable. This poses an intriguing contrast to the fact that disagreement

improves the LP’s mean forecast according to (9), and as such is desirable. Interestingly,

assuming identical MSFEs across all mean forecasts, (9) implies that the weights ω that

maximize expected disagreement E[D] actually minimize the combined MSFE, E[S].

While the LP produces biased variance forecasts, disagreement might be positively cor-

related with S. Therefore, removing disagreement could be detrimental to density forecast

accuracy. The correlation of D and S is difficult to quantify in general, but a relevant result

emerges under

Assumption 2. (i) The vector (M ′, Y )′ with M = (M1,M2, . . . ,Mn)′ follows a multivariate

normal distribution. (ii) For all i = 1, . . . , n, it holds that E[Mi] = E[Y ]. (iii) The combina-

tion weights ω∗ are chosen to minimize the MSFE, subject to the constraint that they sum to

one. (iv) The covariance matrix of (M ′, Y )′ is such that the MSFE-optimal weights ω∗ are

all nonnegative.

Assumption 2 (i) is a common but strict requirement; in practice, it seems far more

restrictive than the assumption of conditional normality discussed at the end of Section 2.

Assumption 2 (ii) requires the mean forecasts to be unconditionally unbiased, analogous to

Assumption 1 for variances. MSFE-optimal weights ω∗, as described in Assumption 2 (iii)

and first considered in Bates and Granger (1969), are also optimal in terms of the DSS. Note

that ω∗ can have negative elements, which is problematic in the context of density combina-

tion (see Section 2). We therefore rule out negative elements in ω∗ by invoking Assumption

2 (iv). However, the statement of the proposition remains valid without Assumption 2 (iv).

Proposition 2. Under Assumption 2, Cov(D,S) = 0 holds.
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Proof. See Appendix A.

Proposition 2 shows that disagreement D and the squared error of the combined forecast

S can be uncorrelated under a set of strict (albeit empirically potentially relevant) conditions.

We next provide an intuition on why D and S are correlated under non-optimal weights:

Consider two mean forecasts, where forecast A is very accurate, while forecast B is very

imprecise, such that the MSFE-optimal weight on forecast A is close to one in the combined

forecast. If equal weights are used for the combined forecast, and if A and B are very

different, i.e. if there is strong disagreement, E[S|I] is large, because the combined forecast

then differs strongly from the accurate forecast A. If A and B are similar, i.e. if there is

little disagreement, the combined forecast is close to the accurate forecast A, leading to a

relatively low value of E[S|I]. This illustrates why D and S may well be correlated under

non-optimal weights. The correlation of D and S under non-normality but optimal weights,

however, is hard to grasp intuitively.5 In the Monte Carlo simulations in Section 5, we

therefore illustrate the impact of t-distributed forecasts on this correlation.6

Propositions 1 and 2 have important implications for the choice of combination weights ω.

The MSFE-optimal weights ω∗ are not optimal for the LP’s variance, because disagreement

becomes a bias-augmenting noise term, and is hence undesirable. Since disagreement vanishes

if one forecast receives a weight of one, the LP faces a trade-off between accurate mean

forecasts achieved by using ω∗ and accurate variance forecasts achieved by using a weight

vector ι[i] that places a weight of one on a single forecast i, and a weight of zero on all other

forecasts. The DSS-optimal weights for the LP will differ from ω∗ if the gain in variance

forecast accuracy obtained by moving from ω∗ towards some ι[i] exceeds the corresponding

loss in mean forecast accuracy. The variance forecast will become more accurate in this case

because its bias is reduced and its disagreement component becomes correlated with the

squared forecast error. The CLP faces a similar trade-off. However, moving from ω∗ towards

ι[i] will yield smaller gains in variance forecast accuracy for the CLP, because the initial bias

is smaller and, hence, the bias reduction will be smaller. Moreover, there is no disagreement

5As detailed in the proof, the correlation between D and S depends on the correlation between two
quadratic forms of the vector Z = (M ′, Y )′.

6If the variance of the target variable itself changes over time, and the variances of the mean forecasts
change accordingly, disagreement is correlated with the squared error of the combined forecast S even if
Assumption 2 holds. However, also in this case, disagreement might not convey any information about S
beyond those contained in ω′V . For details, see the prediction space approach in Section 5 of Knüppel and
Krüger (2019).
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component which becomes correlated with the squared forecast error. Therefore, the DSS-

optimal weights of the LP can be expected to differ more strongly from the MSFE-optimal

weights ω∗ than the DSS-optimal weights of the CLP.

By removing the disagreement component, the CLP reduces the variance of the LP

in a simple and transparent way. It thus offers a possible alternative to several existing

density combination methods that aim to improve upon the LP. We next sketch some of

these methods for the simple case that n Gaussian densities are combined; see Gneiting and

Ranjan (2013) and Aastveit et al. (2019) for more general treatments.

The logarithmic pool (LogP; see Wallis, 2011, eq. 9) is identical to the CLP if all Gaussian

forecast densities have identical variances vi. If the variances are not all identical, the variance

of the LogP is smaller than the CLP’s variance. Similar to the CLP, the LogP’s variance

does not depend on the individual means mi (see Wallis, 2011, Section III). Studies such

as Lichtendahl Jr et al. (2013) and Busetti (2017) consider averaging the quantiles implied

by n forecast densities (QP). In the Gaussian case, the QP density is again Gaussian with

mean equal to the LP (and CLP), and variance given by vqp = (
∑n

i=1 ωi
√
vi)

2 ≤ vclp ≤ vlp

(see Busetti, 2017, Section II). The QP’s tendency to generate a combined density with

lower variance than the LP holds beyond the Gaussian case (see Lichtendahl Jr et al., 2013,

Proposition 8).

The spread-adjusted linear pool (sLP; see Gneiting and Ranjan, 2013, Section 3.2) pro-

duces the combined density fslp(y) =
∑n

i=1 ωi fN (y;mi, κ
2vi), where fN (y;m, v) is the den-

sity of an N (m, v) variable at y, and κ > 0 is a parameter to be estimated. The sLP’s

variance prediction is then given by vslp = d+ κ2 vclp. Hence if κ < 1, the sLP reduces the

LP’s variance by down-scaling its average variance component while retaining disagreement.

The beta-transformed linear pool (bLP; see Gneiting and Ranjan, 2013, Section 3.3) uses the

density fblp(y) = flp(y) bα,β(Flp(y)), where bα,β is the density of the beta distribution with

parameters α > 0, β > 0 to be estimated, and Flp is the CDF of the linear pool. The bLP’s

forecast density is particularly flexible, in that its shape can differ from the LP in various

ways. However, it implicitly contains D, which can be a noise term.

Note that, in contrast to the other combination methods mentioned, implementing the

sLP and bLP requires the choice of additional parameters. Moreover, the sLP and bLP

approaches can also easily be applied to the CLP instead of the LP. While our analytical
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and simulation results focus on the LP and CLP, we return to the sLP and bLP in the

empirical analysis of Section 6.

5 Monte Carlo simulations

Here we illustrate our results by simulating variants of the baseline example in Section 3.

The target variable is given by Y = X1 +X2 + U, with


X1

X2

U

 ∼



0

0

0

 ,


1 0 0

0 σ2
X2

0

0 0 1


 .

In all simulations, U is normally distributed. The mean forecasts are given by Mi = Xi

for i = 1, 2. The corresponding variance forecasts equal V1 = σ2
X2

+ 1 and V2 = 2, hence

satisfying Assumption 1. The mean forecast of each combination scheme we consider equals

Mc = ω′M = ω1M1 + (1− ω1)M2, where ω1 is the weight for the first forecast.

We employ three combination schemes, the linear pool (LP), the centered linear pool

(CLP) and, additionally, a variance-unbiased linear pool (VULP). The latter is difficult

to apply in practice, but it is useful to illustrate some of the theoretical results. We

denote the ith density forecast by fi (Mi, Vi), where Mi denotes the mean and Vi the

variance of fi. The density fi need not be normally distributed, but our notation sup-

presses the potential dependence on additional parameters for simplicity. The density of

the LP is given by flp = ω1f1 (M1, V1) + (1− ω1) f2 (M2, V2) whereas the density of the

CLP equals fclp = ω1f1 (Mc, V1) + (1− ω1) f2 (Mc, V2). Thus, the CLP relocates both

individual density forecasts at Mc before combining them. Finally, the density of the

VULP is fvulp = ω1f1 (Mc, V1 − E [D]) + (1− ω1) f2 (Mc, V2 − E [D]). Hence, in addition

to relocating, the VULP rescales both densities such that the individual variance forecasts

are reduced by E [D] . While all three combined densities have the same mean forecast (i.e.

13



Mlp = Mclp = Mvulp = Mc), the variance forecasts are as follows:

Vlp = ω′V +D = ω1

(
σ2
X2

+ 1
)

+ (1− ω1) 2 +D,

D = ω1 (M1 −Mc)
2 + (1− ω1) (M2 −Mc)

2

= ω1(1− ω1)(M1 −M2)2 ;

Vclp = ω′V = ω1

(
σ2
X2

+ 1
)

+ (1− ω1) 2 ;

Vvulp = ω′V − E [D] ,

E [D] = ω1 (1− ω1)
(
σ2
X2

+ 1
)
.

Note that Vclp and Vvulp are constant, whereas Vlp contains a stochastic component. The

individual and combined densities we consider do not involve parameter estimation. This

‘population’ perspective allows for clear comparisons to our theoretical results. All reported

results are averages over 1,000 Monte Carlo iterations. Each iteration, in turn, comprises

10,000 observations of X1, X2, U and Y , which we use to compute the individual and com-

bined densities and to assess their forecast performance.

In the first case we consider, all random variables and forecast densities are normal, and

σ2
X2

equals 1.5. Thus, f2 has a lower variance than f1, and M2 produces a lower MSFE

than M1. We consider a range of weights ω1 ∈ [0, 1] placed on the first forecast. The top

left panel of Figure 1 displays the variance of the three pools. In line with Proposition 1,

the CLP’s constant variance, Vclp, lies halfway between the constant optimal variance Vvulp

and the LP’s expected variance E[Vlp]. Furthermore, the variance of the VULP is minimal

at ω∗1 = 0.4 which is the MSFE-optimal weight. The bias term E [D] is maximal at ω1 = 0.5.

The correlation coefficients displayed in the bottom left panel of Figure 1 illustrate the result

of Proposition 2, in that D and S are uncorrelated at ω∗1.

The top left panel of Figure 2 refers to the DSS. As shown there, the optimal combination

weights differ for each pool. For the VULP, the minimal score is attained at ω∗1 = 0.4. For

the other pools, however, it is optimal to reduce the bias of their variance forecasts at the

cost of lower accuracy of their mean forecasts. For the CLP, the smallest DSS is reached

at ω1 = 0.37. For the LP, which has a larger variance bias than the CLP, a considerably

smaller weight of ω1 = 0.24 turns out to be optimal. Similar observations apply to the log

score (bottom left panel of Figure 2). Here the optimal weights for the VULP and the CLP
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are virtually the same as for the DSS, although their forecast densities are non-normal. For

the LP, the optimal weight equals ω1 = 0.3. Since the LP’s scores are flatter due to its higher

variance bias, these simulation results indicate that finding optimal combination weights for

the LP is likely to be more difficult than for the CLP in practice. For both scores, the LP

performs worst for a wide range of weights around ω∗1, and the VULP performs best.

In the second case we consider, X1 and X2 both follow t-distributions with 5 degrees of

freedom, rescaled such that σ2
X1

= σ2
X2

= 1. Each individual forecast continues to be ideal –

conditional on the respective information set – in terms of its mean and variance prediction.

However, the forecast densities fi are chosen to be rescaled t-distributions with 5 degrees of

freedom, while the correct density would be given by the density of Mj + U , i.e. the sum of

a (rescaled) t-distributed and a normal random variable. The results in terms of combined

variance (top right panel of Figure 1) correspond to Proposition 1. The bottom right panel

of Figure 1 shows the correlation between D and S. While the correlation still reaches its

minimum at ω∗1, this minimum differs from zero because the assumption of joint normality

of the vector (M1,M2, Y )′ required by Proposition 2 is violated.

For each pool, the DSS (top right panel of Figure 2) and the log score (bottom right panel)

differ because all combined densities are non-normal. All pools attain their lowest values at

ω∗1, and the LP performs worse than the CLP and the VULP at ω∗1 and for a certain range of

weights around ω∗1. This range covers more than the central 50% of all weights considered.

The VULP outperforms the CLP with respect to the DSS. For the log score, the VULP and

CLP attain similar values, with the CLP performing marginally better.7

6 Pooled density forecasts for inflation

We next investigate the properties of the LP and other combination methods for density

forecasts of US inflation. We consider two distinct individual forecasting approaches: First,

the model by Clark et al. (2020, henceforth CMM) which constructs a forecast distribution

based on point forecasts from the Survey of Professional Forecasters (SPF). Briefly, CMM

fit a Bayesian stochastic volatility model for the conditional distribution of the SPF point

7The latter result is basically due to the fact that a combination of misspecifications (CLP: wrong variance
and wrong kurtosis) can yield a density that is closer (in terms of the Kullback-Leibler divergence) to the true
density than a density with a single misspecification (VULP: same wrong kurtosis as the CLP, but correct
variance).
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Figure 1: Left column: Simulation results for case 1 (Gaussian forecasts, σ2
X2

= 1.5). Right
column: Simulation results for case 2 (rescaled t-distributed density forecasts, σ2

X2
= 1). The

first row shows the forecast variance of the linear pool (LP), the centered linear pool (CLP)
and the variance-unbiased linear pool (VULP), plotted against ω1. The second row shows
the correlation between disagreement D and the squared forecast error S of the combined
mean forecast, again plotted against ω1. The vertical blue line indicates the MSFE-optimal
weight ω∗1.
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Figure 2: Left column: Simulation results for case 1 (Gaussian forecasts, σ2
X2

= 1.5). Right
column: Simulation results for case 2 (rescaled t-distributed density forecasts, σ2

X2
= 1).

The first row shows the Dawid-Sebastiani score for the linear pool (LP), the centered linear
pool (CLP) and the variance-unbiased linear pool (VULP), plotted against the combination
weight ω1. A lower score indicates a more accurate forecast. The vertical blue line indicates
the MSFE-optimal weight ω∗1. The second row shows analogous plots for the log score.
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forecast errors. This distribution, together with the point forecasts themselves, implies a

forecast distribution for inflation. We use the ‘baseline’ variant that is described in detail in

CMM’s Sections III.A, III.B and III.D. Second, we consider the unobserved component model

with stochastic volatility (UCSV) by Stock and Watson (2007). Following Chan (2013), we

estimate two variance terms appearing in the model via Bayesian methods, rather than

setting them to a fixed value. We provide details and prior parameters for both models in

Appendix B.

The CMM model harnesses survey point forecasts which are likely to contain judgmental

elements, and are often found to perform well compared to purely statistical approaches (e.g.

Faust and Wright, 2013). The UCSV model, by contrast, is a prominent example of a purely

statistical approach. It can be viewed as a flexible filtering technique that accommodates

smooth time variation in the level and volatility of inflation. The use of stochastic volatility

in both the CMM and the UCSV model reflects possible conditional heteroscedasticity in

macroeconomic time series (e.g. Clark and Ravazzolo, 2015).

We estimate both models recursively using the annualized quarterly growth rate of

the GDP deflator, based on first-release data available in the Federal Reserve Bank of

Philadelphia’s Real-Time Database. Using real-time vintages for model estimation is one

of the approaches advocated by Clements and Galvao (2020) to account for the effects of

data uncertainty when making probabilistic forecasts. We investigate forecasts at horizons

h = 1, 2, . . . , 5,8 and our evaluation sample ranges from 1976:Q2 to 2018:Q3 (170 observa-

tions).9 We denote the combination weight for the CMM model by ω1.

Figure 3 presents the forecasts for the mean and the variance of inflation at horizons

h = 1 and h = 5; the corresponding plots for the other (intermediate) horizons are displayed

in Section III of the Online Appendix. The mean forecasts of both models are more strongly

correlated for h = 1 than for h = 5, and the UCSV model tends to forecast larger variances

especially around 1980. Figures 4 and 5 display the results of the LP and the CLP for all

positive weights. In contrast to the Monte Carlo simulations, the variance-unbiased linear

pool cannot be used because expected disagreement is unknown. The top row of Figure

8For the CMM model, forecasts at h = 1 utilize SPF ‘nowcasts’ that are released around the middle of
the quarter to be predicted (e.g., the middle of February 2020 for 2020:Q1). This timing conforms roughly
to the first release of the previous quarter’s inflation rate, justifying the notion of a one-step ahead forecast.

9For forecasts at horizon h > 1, the first (h − 1) observations cannot be used for evaluation since a
corresponding forecast is not available.
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4 summarizes the pools’ variance forecasts and their MSFEs. The results for the weights

ω1 = 0 and ω1 = 1 reveal that the variance forecasts of both models exceed their respective

MSFEs; this upward bias is more pronounced for the UCSV model. Average disagreement

(vertical distance between black and orange lines) depends on the combination weight ω1.

Furthermore, the MSFE of the pools’ mean forecast is minimized at ω∗1 ≈ 0.95 for h = 1 and

at ω∗1 ≈ 0.6 for h = 5, reflecting the better point forecast performance of the CMM model

which, in turn, reflects the predictive content of the SPF.10 The good point forecasting

performance of the SPF, especially at short horizons, is well known in the literature (see e.g.

Krüger et al., 2017).

The second row of Figure 4 shows the correlation between Vlp and S, and between Vclp and

S. The results for ω1 = 0 and ω1 = 1 indicate that the variance forecasts are somewhat more

strongly correlated with the squared mean forecast errors in the case of the CMM model.

The differences between the correlations of the CLP and LP are caused by disagreement.

For h = 1, disagreement appears to be helpful for predicting S especially if the combination

weight differs sufficiently from ω∗1, as discussed in the context of Proposition 2. For h = 5, the

two pools’ correlation with S is similar (albeit slightly larger for the LP) across all weights

ω ∈ [0, 1].

Figure 5 display the DSS and log scores of both pools. The LP tends to attain slightly

better scores than the CLP at h = 1, while the CLP often performs moderately better at

h = 5. At h = 1, the best scores are obtained simply by using the CMM model. At h = 5,

the CLP with a weight of roughly 0.75 would yield the best scores. The LP would prefer a

weight closer to one.

The results of Diebold and Mariano (1995) tests for equally weighted forecasts (i.e. ω1 =

0.5), reported in Table 2, indicate that at h = 1, the differences between the scores of the

LP and the CLP are insignificant. At h = 5, the CLP attains better scores than the LP,

with the difference being significant at the 5% level for both the DSS and the log score.11

Similarly, the first row of Table 2 shows that the CLP performs significantly better than the

LP at conventional levels for both scores at horizons h = 2, 3, 4 with one exception.

In addition to the LP and CLP, we also investigate the spread-adjusted linear pool

(sLP) and the beta-transformed linear pool (bLP) discussed in Section 4. We estimate the

10The MSFE-optimal choice of ω1 equals 0.73, 0.59 and 0.57 for h = 2, 3 and 4, respectively.
11Here and throughout, our statements on significance refer to two-sided tests.
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required tuning parameters (κ for the sLP, α and β for the bLP) based on an expanding

window of data, using a minimum of ten observations. Implementation details are described

in Appendix B.3.

As indicated by Table 2 (second and third row), the sLP attains significantly better DSS

scores than the CLP at horizons 3 and 5, using a 5% significance level. The performance

of sLP and CLP is statistically indistinguishable at conventional levels in all other com-

parisons. Similarly, the score differences between the bLP and CLP are insignificant in all

cases. These results indicate that more sophisticated combination methods are of limited

help for addressing the LP’s calibration problems, possibly due to limited data available for

estimating the combination tuning parameters.

We also apply the spread adjustment and the beta transformation to the CLP’s density

fclp instead of the LP’s density flp, denoting these combination methods by sCLP (spread-

adjusted centered linear pool) and bCLP (beta-transformed centered linear pool), respec-

tively. The motivation of these variants is to first remove the potentially noisy disagreement

component via centering, and then use other methods in order to handle (any remaining)

miscalibration. As shown by the fourth and fifth row of Table 2, the performance of these

methods (as compared to sLP and bLP) is modestly encouraging: While applying the re-

calibration methods to fclp instead of flp leads to significant improvements at the 5% level

in some instances, it never causes significant deteriorations.

Finally, Table 3 shows the average scores of all combination methods considered. While

the LP attains the best scores for h = 1, the sCLP method mostly performs best for h ∈

{2, 3, 4, 5}.
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Dawid-Sebastiani score Log score
h 1 2 3 4 5 1 2 3 4 5

LP-CLP -0.21 2.55 3.84 4.30 3.23 -0.81 1.10 3.30 2.62 2.30

sLP-CLP 0.23 -0.44 -2.02 -1.49 -2.32 0.43 -0.21 -1.28 -0.72 -0.69
bLP-CLP 1.71 0.27 -0.95 -0.21 -0.59 1.53 0.46 -0.63 0.20 0.16
sLP-sCLP -0.42 0.51 1.34 2.35 1.76 -1.00 -0.31 1.43 1.38 1.21
bLP-bCLP -0.57 0.22 2.01 2.55 1.27 -1.05 -0.25 1.58 1.37 0.87

Table 2: t-statistics for comparisons between combination methods, using the Andrews
(1991) variance estimator as implemented in the R package ‘sandwich’ (Zeileis, 2004). A
negative statistic indicates that the first method outperforms the second method and vice
versa. Test statistic is standard normally distributed under the null of equal performance.
All combinations are based on equal weighting (ω1 = 0.5). Evaluation sample ranges from
1976:Q2 to 2018:Q3.

Dawid-Sebastiani score Log score
h 1 2 3 4 5 1 2 3 4 5

LP 1.400 1.519 1.554 1.610 1.680 1.391 1.502 1.534 1.589 1.669
CLP 1.402 1.512 1.543 1.597 1.669 1.396 1.498 1.521 1.576 1.656

sLP 1.404 1.507 1.508 1.577 1.644 1.399 1.496 1.504 1.569 1.650
bLP 1.422 1.517 1.521 1.592 1.654 1.411 1.505 1.509 1.581 1.660
sCLP 1.409 1.505 1.501 1.566 1.636 1.406 1.498 1.495 1.560 1.641
bCLP 1.428 1.516 1.514 1.583 1.648 1.418 1.506 1.502 1.574 1.655

Table 3: Average scores of combination methods, based on equal weighting (ω1 = 0.5).
Score of best performing method printed in bold. Evaluation sample ranges from 1976:Q2
to 2018:Q3.
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Figure 3: Mean (top row) and variance (bottom row) of the forecast distributions for the
CMM and UCSV model. Left and right column correspond to shortest and longest forecast
horizon (h = 1 and h = 5). Evaluation sample ranges from 1976:Q2 to 2018:Q3.
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Figure 4: First row: Variance forecasts (averaged over time) and MSFEs, plotted against
ω1, the combination weight of the CMM model. Second row: Correlation between variance
forecasts (Vlp or Vclp) and squared forecast errors S, again plotted against ω1. Left and right
column correspond to shortest and longest forecast horizon (h = 1 and h = 5). MSFE-
optimal weight is marked by blue vertical line in each plot. Evaluation sample ranges from
1976:Q2 to 2018:Q3.
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Figure 5: First row: Dawid-Sebastiani score, plotted against ω1, the combination weight
of the CMM model. Second row: Log score plotted against ω1. Left and right column
correspond to shortest and longest forecast horizon (h = 1 and h = 5). A lower score
indicates a more accurate forecast. MSFE-optimal weight is marked by blue vertical line in
each plot. Evaluation sample ranges from 1976:Q2 to 2018:Q3.
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7 Conclusion

Incorporating various sources of information continues to be an important challenge in fore-

casting. Ideally, one would like to combine the underlying information sets, and then con-

struct a single model that makes optimal use of the combined information set (e.g. Gneiting

and Ranjan, 2013, p. 1750). This approach is hard or impossible to implement in practice.

Forecast combinations, by contrast, are simple to implement. While they tend to make sub-

optimal use of available information (see e.g. Satopää 2017 on mean forecasts, and Gneiting

and Ranjan 2013 on density forecasts), they often perform well in practice (e.g. Timmer-

mann, 2006). In the context of forecast densities, the linear pool (LP) is the most popular

combination technique.

We show that the LP’s variance forecast is upward biased by twice the expected dis-

agreement – a component of the LP’s variance forecast that reflects differences between

the individual mean forecasts – if the individual variance forecasts are unbiased. Moreover,

we find that disagreement is uncorrelated with the squared mean forecast error of the LP

under empirically relevant conditions. Motivated by these insights, we propose a simple

modification of the LP that removes the disagreement component: the centered linear pool

(CLP).

Roughly speaking, the CLP can be expected to improve on the LP under the following

conditions: First, the forecast variances of the individual models must be large enough.

Second, disagreement must not be overly informative about squared mean forecast errors.

Third, for the CLP to differ from the LP in a relevant way, disagreement must not be too

small. Absent structural breaks at the forecast origin, the first condition seems plausible

if the individual forecasts are based on statistical models, where variance calibration is

typically ensured in the model fitting process. The condition seems far more restrictive if the

individual forecasts are judgmentally generated by humans who often tend to underestimate

uncertainty (see e.g. Moore et al., 2015). The second and third conditions are more elusive,

and are specific to the set of models being combined. The second condition is more likely to

be fulfilled if the combination weights are close to the MSFE-optimal weights of Bates and

Granger (1969). The third condition requires some degree of predictability of the conditional

mean. In the absence of predictability, all individual forecasts are similar to the unconditional

mean. This phenomenon is typical of equity return predictions, which are considered in
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Knüppel and Krüger (2019). In this case, the CLP and LP are essentially equivalent.

Various alternatives to the LP have been proposed in the literature. While some of these

methods are far more flexible than the CLP, their flexibility comes at the cost of additional

parameters that must be estimated or fixed. In our empirical analysis of inflation data,

two flexible methods based on the LP can mostly not significantly improve upon the CLP,

perhaps due to the relatively short sample available for estimating their parameters, but

possibly also reflecting noise in the disagreement component. Therefore, it may be helpful

to consider the CLP instead of the LP as an input to more flexible combination methods.
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A Appendix: Proof of Proposition 2

Due to Assumption 2 (i) and (ii), i.e. due to normality and equal means of M and Y , we

can write Y = M ′γ + U , where

M
U

 ∼ N

µM

0

 ,
ΣM 0

0 ΣU


 , (13)
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where γ is the vector of coefficients for the best linear predictor of Y given M . Without loss

of generality, we assume that µM = 0. Disagreement is given by

D = (M − ι ω′M)′ G (M − ι ω′M),

where ι is an n × 1 vector of ones, and G is an n × n matrix with ω sitting on the main

diagonal, and all other elements equal to zero. Noting that ι′G = ω′ and ι′Gι = 1, this can

be simplified to

D = M ′AM, (14)

where A ≡ [G− ωω′] . The squared error of the combined forecast is given by

S =

[
Y − ω′M

]′ [
Y − ω′M

]
=

[
U ′ +M ′(γ − ω)

] [
U + (γ − ω)′M

]
= U ′U +M ′BM + 2 M ′(γ − ω) U, (15)

where B ≡ (γ − ω)(γ − ω)′.

To compute the covariance between D and S, note that

DS = M ′AM U ′U +M ′AM M ′BM + 2M ′AM M ′(γ − ω)U,

E [DS] = E
[
M ′AM

]︸ ︷︷ ︸
=E[D]

ΣU + E
[
M ′AM M ′BM

]
, (16)

where we have used the independence of U and M . The second summand in (16) is a quartic

form in a Gaussian random vector. The results in Section 8.2.4 of Petersen and Pedersen

(2012) and the assumption that E[Mi] = 0, i = 1, . . . , n imply that

E
[
M ′AM M ′BM

]
= 2 Tr [AΣMBΣM ]

+ Tr [AΣM ]︸ ︷︷ ︸
=E[D]

Tr [BΣM ]︸ ︷︷ ︸
=E[S]−ΣU

,

where we have used the symmetry of A and B; the expectations of D and S follow from
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equations (14) and (15) and the results in Section 8.2.2 of Petersen and Pedersen (2012).

Substituting back into (16) and rearranging, we find that

Cov(D,S) = E [DS]− E [D]E [S] = 2 Tr [AΣMBΣM ] . (17)

Thus, the covariance between D and S is nonzero in general. However, in case of (con-

strained) optimal combination weights, Proposition 2 states that Cov(D,S) = 0. In order

to prove this statement, we first derive an expression for B = (γ − ω∗)(γ − ω∗)′, where ω∗

denotes the optimal combination weights. Since the weights ω∗ are restricted to sum to 1,

ι′ω∗ = 1,

they are given by the population value of a restricted least squares regression of Y on M .

The probability limit of this estimator is given by

ω∗ = γ − Σ−1
M ι
(
ι′Σ−1

M ι
)−1

(ι′γ − 1). (18)

Hence,

B ≡ (γ − ω∗)(γ − ω∗)′

=
(ι′γ − 1)2(
ι′Σ−1

M ι
)2︸ ︷︷ ︸

≡ c ∈ R+

(
Σ−1
M ιι′Σ−1

M

)
. (19)

We can now use these results to show that the term on the right-hand side of (17) equals

zero. Equation (19) and the definition A = [G− ω∗ω∗′] imply that

AΣMBΣM = c
[
G− ω∗ω∗′

]
ιι′,

= c×

Gιι′︸︷︷︸
=ω∗ι′

− ω∗ω∗′ι︸︷︷︸
=1

ι′

 ,

= c× 0× I,

such that Tr (AΣMBΣM ) = 0, completing the proof.

30



B Appendix: Details on models for Section 6

B.1 CMM model

The CMM model refers to the forecast error of the SPF point forecast at a given date and

forecast horizon. To obtain a forecast distribution, one can simply shift the error distribution

by the SPF mean forecast. As a simple example, suppose the SPF mean forecast is equal to

three and the error distribution is standard normal. The forecast distribution is then given

by a normal distribution with mean three and variance one.

The CMM model considers a five-dimensional vector ηt containing a nowcast error and

four expectational updates; see Clark et al. (2020, Section III.B) for details. Notice that

ηt is an auxiliary vector that encodes information on the SPF forecast errors. While the

SPF forecast errors are highly persistent by construction, ηt can plausibly be modeled as

a martingale difference sequence (MDS) with the property that E(ηt|ηt−1, ηt−2, . . .) = 0.

Modeling ηt is hence preferable to modeling the forecast errors directly. We consider the

following variant of the CMM model:

ηt = A−1 η̃t, η̃t = Λt
0.5εt (20)

Λt = diag(λ1,t, . . . , λ5,t)

εt ∼ N (0, I5),

where A in (20) is a lower triangular matrix of dimension 5×5 and I5 is the five-dimensional

identity matrix. The variance-covariance matrix of ηt is hence given by A−1ΛtA
−1′ . This

specification is almost identical to CMM’s baseline variant using the MDS assumption, except

for a minor difference in parametrization (CMM consider the inverse of the matrix A in

equation 20). Stochastic volatility is captured by assuming a random walk process for the

logarithmic value of λi,t, which is the ith element of Λt:

log λi,t = log λi,t−1 + νi,t,(
ν1,t, . . . , ν5,t

)′
∼ N (0,Φ).

We use uninformative priors for the elements of A. Following CMM, we use an inverse

Wishart prior for Φ, using 14 degrees of freedom and implying that the prior mean matrix
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is given by (0.22) I5. This prior specification is somewhat informative, and in particular

discourages implausibly large values of Φ. Again following CMM, our prior for the initial

log variances log λi,0 is N (log(0.25), 10), independently across i = 1, . . . , 5.

Conditional on the model parameters drawn in MCMC iteration j, the CMM model’s

forecast distribution at a generic horizon is Gaussian with mean equal to the SPF forecast,

and variance vj . The final predictive distribution then obtains as a scale mixture of M

Gaussian distributions, where M is the number of MCMC iterations. In our implementa-

tion we use M = 10, 000 (without thinning), obtained after discarding 5, 000 burn-in draws.

Our code for the CMM model is written in R and C++, and is partly based on the MAT-

LAB code kindly made available by Elmar Mertens at https://github.com/elmarmertens/

CMMrestat-TimeVaryingUncertainty.

B.2 UCSV model

The UCSV model by Stock and Watson (2007) assumes the following process for the inflation

rate yt:

yt = τt + εyt , εyt ∼ N (0, exp(ht))

τt = τt−1 + ετt , ετt ∼ N (0, exp(gt)))

ht = ht−1 + εht , εht ∼ N (0, σ2
h)

gt = gt−1 + εgt , εgt ∼ N (0, σ2
g)

Here τt is the trend rate of inflation; εyt and ετt denote the innovations to inflation itself

and trend inflation respectively. Both innovations are assumed heteroscedastic, with time

varying log variances ht and gt.

Our implementation and prior choices follow Chan (2013). For σ2
h and σ2

g , we employ

inverse gamma priors with shape parameter equal to 10 and rate parameter equal to 0.45.

We use the MCMC implementation by Chan (2013) to estimate the model, based on

MATLAB code kindly made available by the author at http://joshuachan.org/code/

code_MASV.html. We consider 10, 000 MCMC iterations, without thinning, and after dis-

carding a burn-in sequence of 5, 000 draws. In each iteration, we compute the mean and

variance of the Gaussian forecast distribution for inflation (conditional on model parame-
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ters in the current iteration), at a given forecast horizon. As detailed below, the model’s

predictive distribution obtains as a mixture of 10, 000 normal distributions.

B.3 MCMC sampling and forecast distributions

The predictive distributions of the CMM and UCSV methods are both produced via Bayesian

MCMC sampling, and both are mixtures of normals. We next describe the details of various

forecast combination methods in this setup. To avoid clutter, we index the CMM and UCSV

methods by ‘C’ and ‘U’, and we suppress the forecast origin date and forecast horizon. The

forecast density of model i ∈ {C,U} takes the form

fi(y) =
1

M

M∑
j=1

fN (y;mij , vij),

where M is the number of MCMC draws, fN (y;m, v) is the density at y ∈ R of a Gaussian

distribution with mean m and variance v, and mij and vij denote the predictive mean and

variance in the jth MCMC draw for model i. Furthermore, let ω1 and 1 − ω1 denote the

weights placed on models C and U respectively. The following formulas describe the relevant

pooling methods in the empirical setup of Section 6.

• Linear pool (LP)

flp(y) =
1

M

ω1

M∑
j=1

fN (y;mCj , vCj) + (1−ω1)
M∑
j=1

fN (y;mUj , vUj)

 ,

where we consider a range of weights ω1 ∈ [0, 1].

• Centered linear pool (CLP)

fclp(y) =
1

M

ω1

M∑
j=1

fN (y;mCj + m̄− m̄C , vCj) + (1−ω1)

M∑
j=1

fN (y;mUj + m̄− m̄U , vUj)

 ,

where m̄j = M−1
∑M

j=1mij denotes the mean forecast of method j ∈ {C,U}, and

m̄ = ω1 m̄C + (1 − ω1) m̄U . Note that the forecast draws of methods C and U are

recentered such that the mean forecast is equal to m̄ in each case. We again consider

a range of weights ω1 ∈ [0, 1].
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• Spread-adjusted linear pool (sLP)

fslp(y) =
1

M

ω1

M∑
j=1

fN (y;mCj , κ
2vCj) + (1−ω1)

M∑
j=1

fN (y;mUj , κ
2vUj)

 ,

where κ ∈ R+ is a parameter to be estimated from a sample of past forecasts and

realizations. As described in the text, we use an expanding window of at least 10

observations for estimation. We further fix ω1 = 0.5.

• Spread-adjusted centered linear pool (sCLP)

fsclp(y) =
1

M

ω1

M∑
j=1

fN (y;mCj + m̄− m̄C , κ
2vCj) + (1−ω1)

M∑
j=1

fN (y;mUj + m̄− m̄U , κ
2vUj)

 ,

where the interpretation and handling of κ is the same as in the sLP, and we again

fix ω1 = 0.5. The sCLP can be thought of as first centering the linear pool, and then

applying spread adjustment by estimating κ.

• Beta-transformed linear pool (bLP)

fblp(y) = flp(y) bα,β(Flp(y)),

where bα,β is the density of the beta distribution with parameters α > 0, β > 0 to be

estimated. We use an expanding window of at least 10 observations for estimation.

Furthermore, we fix ω1 = 0.5 in the linear pool that enters the bLP.

• Beta-transformed centered linear pool (bCLP)

fbclp(y) = fclp(y) bα,β(Fclp(y)),

where the definition and implementation of bα,β is as in the bLP.
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