Online Appendix for 'Forecast Uncertainty, Disagreement, and the Linear Pool' ${ }^{\prime}$

Malte Knüppel
Deutsche Bundesbank

Fabian Krüger
Karlsruhe Institute of Technology

April 8, 2021

I Derivations for baseline example

Here we prove that D and S are independent for $\omega_{1}=0.5$. Consider the zero mean vector $W=\left[\begin{array}{lll}X_{1}, & X_{2}, & U\end{array}\right]^{\prime}$ with variance-covariance-matrix

$$
\Omega=\left[\begin{array}{ccc}
\sigma_{X}^{2} & \rho \sigma_{X}^{2} & 0 \\
\rho \sigma_{X}^{2} & \sigma_{X}^{2} & 0 \\
0 & 0 & \sigma_{X}^{2}
\end{array}\right] .
$$

We can write W as $W=C Z$, where C is the lower-diagonal Cholesky matrix of Ω, and Z is a trivariate vector of independent standard normals. Simple algebra yields that

$$
C=\left[\begin{array}{ccc}
\sigma_{X} & 0 & 0 \\
\rho \sigma_{X} & \sqrt{1-\rho^{2}} \sigma_{X} & 0 \\
0 & 0 & \sigma_{U}
\end{array}\right] .
$$

D is proportional to $\left(X_{1}-X_{2}\right)^{2}$. We can write

$$
\left(X_{1}-X_{2}\right)^{2}=(\underbrace{\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right]}_{=a^{\prime}} \times W)^{2}=Z^{\prime} C^{\prime} a a^{\prime} C Z ;
$$

furthermore,

$$
S=(\underbrace{\left[\begin{array}{lll}
\omega(1+\rho) & (1-\omega)(1+\rho) \quad 1
\end{array}\right]}_{=b^{\prime}} W)^{2}=Z^{\prime} C^{\prime} b b^{\prime} C Z .
$$

A standard result (Craig, 1943) states that D and S are independent if $C^{\prime} a a^{\prime} C C^{\prime} b b^{\prime} C=0$. Simple but tedious algebra shows that this condition is satisfied for $\omega_{1}=0.5$.

II (A)symmetry of the Centered Linear Pool

Here we collect a number of symmetry properties of the centered linear pool (CLP) density, $f_{c l p}$. We first state these properties formally and then provide examples.

II. 1 Formal properties

To introduce the relevant notation, let $f_{i}(x)$ be the i th density that enters the combination, and denote the mean of this density by m_{i}. The CLP density is given by

$$
\begin{aligned}
f_{c l p}(x) & =\sum_{i=1}^{n} w_{i} \tilde{f}_{i}(x) \\
\tilde{f}_{i}(x) & =f_{i}\left(x-\left(m_{c l p}-m_{i}\right)\right) \\
m_{c l p} & =\sum_{i=1}^{n} w_{i} m_{i}
\end{aligned}
$$

Note that $\tilde{f}_{i}(x)$ re-centers f_{i} at $m_{c l p}$ (in other words, it shifts the location of f_{i} such that its mean becomes equal to $m_{c l p}$). We then have the following properties of $f_{c l p}$.

A Suppose that all n component densities are symmetric around their respective median. Then the CLP density is symmetric around $m_{\text {clp }}$.

Proof: By symmetry, the mean m_{i} of the i th component density is also its median. By assumption, f_{i} is symmetric around m_{i}. The modified density $\tilde{f}_{i}(x)$ is symmetric around its mean (and median) $m_{c l p}$. For $i=1, \ldots, n$, we thus have that

$$
\tilde{f}_{i}\left(x-m_{c l p}\right)=\tilde{f}_{i}\left(-\left(x-m_{c l p}\right)\right) .
$$

Hence for the CLP it holds that

$$
\sum_{i=1}^{n} w_{i} \tilde{f}_{i}\left(x-m_{c l p}\right)=\sum_{i=1}^{n} w_{i} \tilde{f}_{i}\left(-\left(x-m_{c l p}\right)\right)
$$

i.e., the CLP is symmetric around $m_{\text {clp }}$, as claimed.

B Suppose that all n component densities are unimodal and symmetric around their respective mode. Then the CLP density is unimodal and symmetric around its mode $m_{c l p}$.
Proof: Since each component f_{i} is symmetric and unimodal, the mean, mode and median of f_{i} are all equal to m_{i}. The mean, mode and median of \tilde{f}_{i} are all equal to $m_{c l p}$. For any two points $x_{1}, x_{2} \in \mathbb{R}$ with $m_{c l p}<x_{1}<x_{2}$ or $x_{2}<x_{1}<m_{c l p}$, it thus holds that

$$
\tilde{f}_{i}\left(x_{1}\right) \geq \tilde{f}_{i}\left(x_{2}\right),
$$

and thus

$$
f_{c l p}\left(x_{1}\right)=\sum_{i=1}^{n} w_{i} \tilde{f}_{i}\left(x_{1}\right) \geq \sum_{i=1}^{n} w_{i} \tilde{f}_{i}\left(x_{2}\right)=f_{c l p}\left(x_{2}\right)
$$

i.e. the CLP has its unique mode at $m_{c l p}$. The symmetry of $f_{c l p}$ around $m_{c l p}$ follows from part A.

II. 2 Examples

We next provide examples for cases A, B and C. Table 1 describes the component densities that enter the combinaton. For simplicity, we use combination weights of 0.5 in each case. Furthermore, the CLP and LP densities have a mean of zero in each case. Figure 1 illustrates the CLP and LP densities, which are in line with the formal description of Section II.1:

- In case A, both components are themselves mixture densities. The first component density is symmetric around its median value of -1 , whereas the second is symmetric around its median value of 1 . The CLP density is bimodal and symmetric around zero, whereas the LP density is bimodal and asymmetric.
- In case B, the two components are Gaussian distributions with different means and variances. The CLP density is unimodal and symmetric around zero, whereas the LP density is unimodal and asymmetric.
- In case C , the components are asymmetric two-piece normal distributions. The densities of both the CLP and the LP are asymmetric.

			Symmetry?	
Case	First Component	Second Component	CLP	LP
A	$.5 \times \mathcal{N}(-3,1)+.5 \times \mathcal{N}(1,1)$	$.5 \times \mathcal{N}(-2,4)+.5 \times \mathcal{N}(4,4)$	Yes	No
B	$\mathcal{N}(-1,1)$	$\mathcal{N}(1,4)$	Yes	No
C	$2 \mathrm{p} \mathcal{N}(1.39,5,2)$	$2 \mathrm{p} \mathcal{N}(2.60,3,1)$	No	No

Table 1: Examples for cases A, B and C. All examples are parametrized such that the CLP and LP densities have mean zero. The notation $\mathcal{N}(a, b)$ indicates a normal distribution with mean a and variance b. The notation $2 \mathrm{p} \mathcal{N}(u, v, w)$ indicates a two-piece-normal distribution with parameters $\mu=u, \sigma_{1}=v, \sigma_{2}=w$ (see e.g. Wallis, 2014).

Figure 1: Densities of the centered linear pool and linear pool using based on equal weights for cases A, B and C.

III Results for intermediate horizons of Section 6

Mean
Variance
$h=2$

- CMM - UCSV

$h=3$
- CMM - UCSV
- CMM - UCSV

$$
h=4
$$

Figure 2: Mean (left column) and variance (right column) of the forecast distributions for the CMM and UCSV models. Rows correspond to different forecast horizons ($h=2,3,4$). Evaluation sample ranges from 1976:Q2 to 2018:Q3.

$$
h=2
$$

$h=3$

$$
h=4
$$

Figure 3: Variance forecasts and MSFE (left column), as well as correlation between variance forecasts ($V_{l p}$ or $V_{c l p}$) and squared forecast errors S (right column), plotted against the combination weight of the CMM model. MSFE-optimal weight is marked by blue vertical line in each plot. Rows correspond to forecast horizons ($h=2,3,4$). Evaluation sample ranges from 1976:Q2 to 2018:Q3.
$h=2$

$h=3$

$$
h=4
$$

Figure 4: Dawid-Sebastiani score (left column) and logarithmic score (right column), plotted against the combination weight of the CMM model. Scores are in negative orientation, i.e. smaller scores are better. MSFE-optimal weight is marked by blue vertical line in each plot. Rows correspond to forecast horizons ($h=2,3,4$). Evaluation sample ranges from 1976:Q2 to 2018:Q3.

References

Craig, A. T. (1943). Note on the independence of certain quadratic forms. The Annals of Mathematical Statistics, 14:195-197.

Wallis, K. F. (2014). The two-piece normal, binormal, or double Gaussian distribution: Its origin and rediscoveries. Statistical Science, 29:106-112.

