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I Derivations for baseline example

Here we prove that D and S are independent for ω1 = 0.5. Consider the zero mean vector
W =

[
X1, X2, U

]′
with variance-covariance-matrix

Ω =

 σ2X ρσ2X 0
ρσ2X σ2X 0

0 0 σ2X

 .
We can write W as W = C Z, where C is the lower-diagonal Cholesky matrix of Ω, and Z is
a trivariate vector of independent standard normals. Simple algebra yields that

C =

 σX 0 0

ρσX
√

1− ρ2σX 0
0 0 σU

 .
D is proportional to (X1 −X2)

2. We can write

(X1 −X2)
2 = (

[
1 −1 0

]︸ ︷︷ ︸
=a′

×W )2 = Z ′ C ′aa′C Z;

furthermore,
S = (

[
ω (1 + ρ) (1− ω) (1 + ρ) 1

]︸ ︷︷ ︸
=b′

W )2 = Z ′ C ′bb′C Z.

A standard result (Craig, 1943) states that D and S are independent if C ′ aa′ CC ′ bb′ C = 0.
Simple but tedious algebra shows that this condition is satisfied for ω1 = 0.5.

II (A)symmetry of the Centered Linear Pool

Here we collect a number of symmetry properties of the centered linear pool (CLP) density,
fclp. We first state these properties formally and then provide examples.
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II.1 Formal properties

To introduce the relevant notation, let fi(x) be the ith density that enters the combination,
and denote the mean of this density by mi. The CLP density is given by

fclp(x) =
n∑

i=1

wif̃i(x),

f̃i(x) = fi (x− (mclp −mi)) ,

mclp =
n∑

i=1

wi mi.

Note that f̃i(x) re-centers fi at mclp (in other words, it shifts the location of fi such that its
mean becomes equal to mclp). We then have the following properties of fclp.

A Suppose that all n component densities are symmetric around their respective median.
Then the CLP density is symmetric around mclp.

Proof: By symmetry, the mean mi of the ith component density is also its median.
By assumption, fi is symmetric around mi. The modified density f̃i(x) is symmetric
around its mean (and median) mclp. For i = 1, . . . , n, we thus have that

f̃i(x−mclp) = f̃i(−(x−mclp)).

Hence for the CLP it holds that

n∑
i=1

wif̃i(x−mclp) =

n∑
i=1

wif̃i(−(x−mclp)),

i.e., the CLP is symmetric around mclp, as claimed.

B Suppose that all n component densities are unimodal and symmetric around their re-
spective mode. Then the CLP density is unimodal and symmetric around its mode mclp.

Proof: Since each component fi is symmetric and unimodal, the mean, mode and me-
dian of fi are all equal to mi. The mean, mode and median of f̃i are all equal to mclp.
For any two points x1, x2 ∈ R with mclp < x1 < x2 or x2 < x1 < mclp, it thus holds that

f̃i(x1) ≥ f̃i(x2),

and thus

fclp(x1) =

n∑
i=1

wif̃i(x1) ≥
n∑

i=1

wif̃i(x2) = fclp(x2),

i.e. the CLP has its unique mode at mclp. The symmetry of fclp around mclp follows
from part A.
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II.2 Examples

We next provide examples for cases A, B and C. Table 1 describes the component densities
that enter the combinaton. For simplicity, we use combination weights of 0.5 in each case.
Furthermore, the CLP and LP densities have a mean of zero in each case. Figure 1 illustrates
the CLP and LP densities, which are in line with the formal description of Section II.1:

• In case A, both components are themselves mixture densities. The first component
density is symmetric around its median value of −1, whereas the second is symmetric
around its median value of 1. The CLP density is bimodal and symmetric around zero,
whereas the LP density is bimodal and asymmetric.

• In case B, the two components are Gaussian distributions with different means and
variances. The CLP density is unimodal and symmetric around zero, whereas the LP
density is unimodal and asymmetric.

• In case C, the components are asymmetric two-piece normal distributions. The densities
of both the CLP and the LP are asymmetric.

Symmetry?
Case First Component Second Component CLP LP

A .5×N (−3, 1) + .5×N (1, 1) .5×N (−2, 4) + .5×N (4, 4) Yes No
B N (−1, 1) N (1, 4) Yes No
C 2pN (1.39, 5, 2) 2pN (2.60, 3, 1) No No

Table 1: Examples for cases A, B and C. All examples are parametrized such that the CLP and
LP densities have mean zero. The notation N (a, b) indicates a normal distribution with mean a
and variance b. The notation 2pN (u, v, w) indicates a two-piece-normal distribution with parameters
µ = u, σ1 = v, σ2 = w (see e.g. Wallis, 2014).
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Figure 1: Densities of the centered linear pool and linear pool using based on equal weights
for cases A, B and C.
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III Results for intermediate horizons of Section 6
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Figure 2: Mean (left column) and variance (right column) of the forecast distributions for
the CMM and UCSV models. Rows correspond to different forecast horizons (h = 2, 3, 4).
Evaluation sample ranges from 1976:Q2 to 2018:Q3.

5



h = 2

1.5

2.0

0.00 0.25 0.50 0.75 1.00

Combination Weight ω1

V
ar

ia
nc

e

LP CLP MSFE

0.17

0.18

0.19

0.00 0.25 0.50 0.75 1.00

Combination Weight ω1

C
or

(V
,S

)

LP CLP

h = 3

1.5

2.0

2.5

3.0

0.00 0.25 0.50 0.75 1.00

Combination Weight ω1

V
ar

ia
nc

e

LP CLP MSFE

0.2625

0.2650

0.2675

0.2700

0.2725

0.2750

0.00 0.25 0.50 0.75 1.00

Combination Weight ω1

C
or

(V
,S

)

LP CLP

h = 4

1.5

2.0

2.5

3.0

3.5

0.00 0.25 0.50 0.75 1.00

Combination Weight ω1

V
ar

ia
nc

e

LP CLP MSFE

0.275

0.300

0.325

0.350

0.375

0.00 0.25 0.50 0.75 1.00

Combination Weight ω1

C
or

(V
,S

)

LP CLP

Figure 3: Variance forecasts and MSFE (left column), as well as correlation between variance
forecasts (Vlp or Vclp) and squared forecast errors S (right column), plotted against the com-
bination weight of the CMM model. MSFE-optimal weight is marked by blue vertical line in
each plot. Rows correspond to forecast horizons (h = 2, 3, 4). Evaluation sample ranges from
1976:Q2 to 2018:Q3.
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h = 2
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Figure 4: Dawid-Sebastiani score (left column) and logarithmic score (right column), plotted
against the combination weight of the CMM model. Scores are in negative orientation, i.e.
smaller scores are better. MSFE-optimal weight is marked by blue vertical line in each plot.
Rows correspond to forecast horizons (h = 2, 3, 4). Evaluation sample ranges from 1976:Q2
to 2018:Q3.
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